Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111)

نویسندگان

  • Amir Gharachorlou
  • Michael D. Detwiler
  • Xiang-Kui Gu
  • Lukas Mayr
  • Bernhard Klötzer
  • Jeffrey Greeley
  • Ronald G. Reifenberger
  • W. Nicholas Delgass
  • Fabio H. Ribeiro
  • Dmitry Y. Zemlyanov
چکیده

Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu(1+) to metallic copper (Cu(0)) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Altet) and octahedrally (Aloct) coordinated Al(3+) in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al(3+) (Altet/Aloct HREELS peak area ratio ≈ 0.3) than did dosing O2 (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al-O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3-4 Å/cycle for TMA+O2 ALD (O2 half-cycles at 623 K). No preferential growth of Al2O3 on the steps of Cu(111) was observed. According to STM, Al2O3 grows homogeneously on Cu(111) terraces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3

Related Articles Influence of annealing and Al2O3 properties on the hydrogen-induced passivation of the Si/SiO2 interface J. Appl. Phys. 111, 093713 (2012) Magnetic properties of ZnO nanoclusters J. Appl. Phys. 111, 084321 (2012) Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by microwave-induced rapid nanowelding Appl. Phys. Lett. 100, 163120 (2012) N...

متن کامل

Atomic Layer Deposition of a High-k Dielectric on MoS2 Using Trimethylaluminum and Ozone

We present an Al2O3 dielectric layer on molybdenum disulfide (MoS2), deposited using atomic layer deposition (ALD) with ozone/trimethylaluminum (TMA) and water/TMA as precursors. The results of atomic force microscopy and low-energy ion scattering spectroscopy show that using TMA and ozone as precursors leads to the formation of uniform Al2O3 layers, in contrast to the incomplete coverage we ob...

متن کامل

Effects of Low Temperature O2 Treatment on the Electrical Properties of Amorphous LaAlO3 Films Made by Atomic Layer Deposition

Amorphous LaAlO3 films were deposited on hydrogen-terminated silicon substrates by atomic layer deposition (ALD) at 300 o C. The precursors were lanthanum tris(N,N’-diisopropylformamidinate), trimethylaluminum (TMA) and water. Capacitance-voltage measurements made on ALD MoN/LaAlO3/Si stacks showed humps especially at low frequencies. They were effectively removed by O2 treatment at 300 o C wit...

متن کامل

Atom-to-atom interactions for atomic layer deposition of trimethylaluminum on Ga-rich GaAs(001)-4 × 6 and As-rich GaAs(001)-2 × 4 surfaces: a synchrotron radiation photoemission study

High-resolution synchrotron radiation photoemission was employed to study the effects of atomic-layer-deposited trimethylaluminum (TMA) and water on Ga-rich GaAs(001)-4 × 6 and As-rich GaAs(001)-2 × 4 surfaces. No high charge states were found in either As 3d or Ga 3d core-level spectra before and after the deposition of the precursors. TMA adsorption does not disrupt the GaAs surface structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015